Finite termination of the proximal point algorithm

نویسنده

  • Michael C. Ferris
چکیده

where q~ is a c losed, convex func t ion def ined on R n, having values in ~ and S is a c losed, convex set in ~n. We write S for the op t ima l so lu t ion set o f (1), S : = arg minxes cb(x) and assume this set to be non-empty , in o rde r tha t a p ro jec t ion o p e r a t i o n on to this set is well def ined. In o rde r to s impl i fy our analysis , let us define , b ~ ( x ) := ¢~(x )+~, (x lS ) and note tha t this is a c losed convex funct ion , s ince the ind ica to r func t ion of the set S, ~0(. I S) , is respect ive ly c losed and convex i f and only i f S is c losed and convex. We can now rewri te p r o b l e m (1) as min imize Cbs(X). (2) X G ~ n

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Proximal Point Algorithm for Finding a Common Zero of a Finite Family of Maximal Monotone Operators

In this paper, we consider a proximal point algorithm for finding a common zero of a finite family of maximal monotone operators in real Hilbert spaces. Also, we give a necessary and sufficient condition for the common zero set of finite operators to be nonempty, and by showing that in this case, this iterative sequence converges strongly to the metric projection of some point onto the set of c...

متن کامل

W-convergence of the proximal point algorithm in complete CAT(0) metric spaces

‎In this paper‎, ‎we generalize the proximal point algorithm to complete CAT(0) spaces and show‎ ‎that the sequence generated by the proximal point algorithm‎ $w$-converges to a zero of the maximal‎ ‎monotone operator‎. ‎Also‎, ‎we prove that if $f‎: ‎Xrightarrow‎ ‎]-infty‎, +‎infty]$ is a proper‎, ‎convex and lower semicontinuous‎ ‎function on the complete CAT(0) space $X$‎, ‎then the proximal...

متن کامل

Composition of resolvents and quasi-nonexpansive multivalued mappings in Hadamared spaces

‎The proximal point algorithm‎, ‎which is a well-known tool for finding‎ ‎minima of convex functions‎, ‎is generalized from the classical‎ ‎Hilbert space framework into a nonlinear setting‎, ‎namely‎, ‎geodesic‎ ‎metric spaces of nonpositive curvature‎. ‎In this paper we propose an‎  ‎iterative algorithm for finding the common element of the‎ ‎minimizers of a finite family of convex functions a...

متن کامل

A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces

Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...

متن کامل

Common Zero Points of Two Finite Families of Maximal Monotone Operators via Proximal Point Algorithms

In this work, it is presented iterative schemes for achieving to common points of the solutions set of the system of generalized mixed equilibrium problems, solutions set of the variational inequality for an inverse-strongly monotone operator, common fixed points set of two infinite sequences of relatively nonexpansive mappings and common zero points set of two finite sequences of maximal monot...

متن کامل

Strong convergence of variational inequality problem Over the set of common fixed points of a family of demi-contractive mappings

In this paper, by using the viscosity iterative method and the hybrid steepest-descent method, we present a new algorithm for solving the variational inequality problem. The sequence generated by this algorithm is strong convergence to a common element of the set of common zero points of a finite family of inverse strongly monotone operators and the set of common fixed points of a finite family...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 50  شماره 

صفحات  -

تاریخ انتشار 1991